Find solutions to all your questions at Johnmiedema.ca. No question is too complex to be discussed here.

## Sagot :

1. [tex]\( 3x + 7x > h \)[/tex]

2. [tex]\( 3x + h > 7x \)[/tex]

3. [tex]\( 7x + h > 3x \)[/tex]

Let's break these down one by one:

### Step 1: Simplify the inequalities

1.

**First Inequality:**

[tex]\[ 3x + 7x > h \][/tex]

[tex]\[ 10x > h \][/tex]

This simplifies to:

[tex]\[ h < 10x \][/tex]

2.

**Second Inequality:**

[tex]\[ 3x + h > 7x \][/tex]

Subtract [tex]\( 3x \)[/tex] from both sides:

[tex]\[ h > 4x \][/tex]

3.

**Third Inequality:**

[tex]\[ 7x + h > 3x \][/tex]

Subtract [tex]\( 3x \)[/tex] from both sides:

[tex]\[ 7x + h - 3x > 0 \][/tex]

[tex]\[ 4x + h > 0 \][/tex]

This simplifies to:

[tex]\[ h > -4x \][/tex]

However, since [tex]\( h \)[/tex] represents a side length of a triangle and must be positive, this inequality is always true and doesn't provide any new information.

### Step 2: Combine the valid inequalities

From the simplified inequalities, we have:

[tex]\[ h < 10x \][/tex]

and

[tex]\[ h > 4x \][/tex]

Combining these two, we get:

[tex]\[ 4x < h < 10x \][/tex]

### Conclusion

The expression that describes the possible values of [tex]\( h \)[/tex] is [tex]\( 4x < h < 10x \)[/tex]. Therefore, the correct answer is:

[tex]\[ 4x < h < 10x \][/tex]