Join Johnmiedema.ca and start asking, we're here to help! We're here to help you find the answers you're looking for.

## Sagot :

1.

**Start with the basic exponential function [tex]\( y = 7^x \)[/tex]:**

- The graph of [tex]\( y = 7^x \)[/tex] is an exponential growth curve that passes through the point [tex]\( (0, 1) \)[/tex] and increases rapidly as [tex]\( x \)[/tex] increases. This is our base function.

2.

**Reflect this graph over the y-axis to get [tex]\( y = 7^{-x} \)[/tex]:**

- To reflect the graph over the y-axis, we replace [tex]\( x \)[/tex] with [tex]\( -x \)[/tex]. The graph of [tex]\( y = 7^{-x} \)[/tex] is a decreasing exponential function that passes through the point [tex]\( (0, 1) \)[/tex] and decreases towards zero as [tex]\( x \)[/tex] increases. This reflection changes the direction of the growth, turning it into a decay.

3.

**Stretch the graph vertically by a factor of 3 to get [tex]\( y = 3 \cdot 7^{-x} \)[/tex]:**

- To stretch the graph vertically, multiply the function by 3. This alters the graph so that for any given [tex]\( x \)[/tex], the value of [tex]\( y \)[/tex] is tripled. This means the graph now passes through the point [tex]\( (0, 3) \)[/tex] and retains its general decreasing shape but is stretched taller.

4.

**Translate the graph upwards by 2 units to get [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex]:**

- To translate the graph upwards, add 2 to the entire function. This means that every point on the graph is moved up by 2 units. The new graph now passes through the point [tex]\( (0, 5) \)[/tex]. The horizontal asymptote of the function also shifts from [tex]\( y = 0 \)[/tex] to [tex]\( y = 2 \)[/tex].

To summarize, the resulting graph of [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex] can be visualized through the following transformations applied to the basic exponential function [tex]\( y = 7^x \)[/tex]:

- Reflect over the y-axis.

- Stretch vertically by a factor of 3.

- Translate upwards by 2 units.

These transformations give us the final graph which is a vertically stretched and upwards shifted version of the reflected exponential decay.