Looking for trustworthy answers? Johnmiedema.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

## Sagot :

**Answer:**

- The slope is 2/3. The correct symbol is '+'.

**Step-by-step explanation:**

__We know that:__

- Slope = [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex]

__Work:__

- => [tex]\frac{y_{2}-y_{1} }{x_{2} -x_{1} }[/tex]
- => [tex]\frac{12-8}{4-(-2)}[/tex]
- => [tex]\frac{4}{6} = \frac{2}{3}[/tex]

Hence, __the slope is 2/3. The correct symbol is '+'.__

Hoped this helped.

[tex]BrainiacUser1357[/tex]

**Answer:**

The slope is ** 2/3**. The correct symbol is "

**".**

__+__**Step-by-step explanation:**

__Solution__** ****:**

Here's the required formula to find the slope :

[tex] \longrightarrow{\pmb{\sf{m = \dfrac{y_2 - y_1}{x_2 - x_1}}}}[/tex]

Where :

[tex]\begin{gathered}\footnotesize\star{\sf{\pink{\underline{\underline{Here}}}}}\begin{cases} \sf m = slope \\ \sf y_2 = 12\\ \sf y_1 =8\\ \sf x_2 = 4 \\ \sf x_1 = - 2\end{cases} \end{gathered}[/tex]

Substituting all the given values in the formula to find slope :

[tex] \begin{gathered} \qquad{\longrightarrow{\sf{m = \dfrac{y_2 - y_1}{x_2 - x_1}}}}\\\\\qquad{\longrightarrow{\sf{m = \dfrac{12 - 8}{4 - ( - 2)}}}}\\\\\qquad{\longrightarrow{\sf{m = \dfrac{4}{4 + 2}}}}\\\\\qquad{\longrightarrow{\sf{m = \dfrac{4}{ 6}}}}\\\\\qquad{\longrightarrow{\sf{m = \cancel{\dfrac{4}{6}}}}}\\\\\qquad{\longrightarrow{\sf{m = \dfrac{2}{3}}}}\\\\\qquad\small \star{\underline{\boxed{\sf{\pink{Slope = \dfrac{2}{3}}}}}}\end{gathered}[/tex]

**Hence****,**** ****the**** ****slope**** ****is**** ****2****/****3****.** **The correct symbol is "+"****.**

[tex]\rule{300}{2.5}[/tex]